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Fresnel Diffraction 
 
 The efficiency of practical methods for phase retrieval from the intensity 
distribution in  Fresnel  (near- field) images is investigated in the paraxial limit. 
The aim was to develop a robust and efficient algorithm for phase retrieval from 
aperiodic objects in the limit where phases may vary continuously by several 
multiples of 2ð across the sampled field. The equations for Fresnel propagation of 
a coherent wave from the object plane are well known, where the complex 
amplitude and phase distribution in the x-y plane at z  is  given by  fz.  Then we 
have  

   fz  =  f ⊗ h       and  Fz =  F H .                             (1) 
 
For continuous functions, the two versions of  Eq.(1) are equivalent, being either 
the convolution of f with the Fresnel kernel  h, or wave propagation of F (capitals 
represent the Fourier transform of a function). We have  

. 

 
Eqs. (2) are written for sampled arrays, where ä is the sampling interval, ë  is the 
wavelength, n is the linear dimension of a square array, x0 and y0 are the image 
offsets in pixel units, with the equivalent beam tilt offsets given by u0 and v0. 
Hereafter, the defocus z is quoted in units of ä2/ë. To conserve flux, the wave 
propagation version of Eq. (2) was used here. As discussed by Mas et al. [1] (see 
Fig. 1), the Nyquist sampling limit for Hu,v with z in the numerator of the exponent 
implies that we must remain within the  near-field limit,  |z|  ≤� n. 
 
The error was defined as the sum of squared intensity differences between 
calculated and observed Fresnel images. For display purposes, the normalised 
square root of the error function is plotted here. As discussed below, this definition 
may have significant consequences for the convergence of phase retrieval 
algorithms.  
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Iterative algorithm 
 
The standard method described by Fienup [2,3] was used for phase retrieval, based 
upon the input-output algorithm  (eqs. (22) and (25) in [2]) with â = 0.7. Trials with 
other versions of the algorithm and different values for the feedback parameter showed 
no significant improvement. To combine data from several Fresnel images, the new 
estimates for f0 were combined by taking the arithmetic mean before applying the 
feedback parameter to find the next input to the algorithm. 
 
Conjugate gradient algorithm 
 
It is essential to use analytic expressions for the partial differentials of the error 
functional with respect to the free parameters. These expressions were used in a 
standard conjugate gradient routine that converges towards a local minimum of the 
error function. Here the relevant equations are summarised; a more detailed 
description is given in [4]. For  a real variable  å,  the partial differentials of  å  with 
respect to f are written as a complex array. In the notation of Thiébaut and Conan [5] 
an array element with indices x,y  is defined as 
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The  partial differentials  with respect to the transformed array F are written as 
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It may be shown that the two arrays of differentials are a Fourier transform pair.  
The definition for the error used here gives 

where gz
2 represents the observed intensities in the Fresnel image. To find the 

gradients of å  with respect to f, we take the Fourier transform of  eq. (5), multiply by 
H*, and then take the inverse transform. This procedure uses the identity 

*HDD
FHF
εε = . The gradients of å  relative to the phases  ö  are  given by 

 The Fourier transform of  ϕ
εd , written as Φ

εD , gives the gradients of å  relative  to the 
Fourier components of  the phase array. Similar equations were used to find the error 
gradients with respect to z, u0  and v0 (see [4]).                         
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    Comparison of  wave propagation and convolution  
 

           

     Convolution 

   
           Defocus                  z = 32             z = 64           z = 128 
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    propagation 
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        Defocus           z = 256           z = 512           z = 1024 

        Wave 
    propagation 

   
         
        Fig. 1.   Comparison of convolution and wave propagation methods for  calculation 
        of  Fresnel images  using  FFTs.  Array dimensions are n x n  for a circular aperture 
        radius  n/4 (n =128). Defoci are given in units of ä2/ë. As discussed by Mas et al., 
        the Nyquist limit applied to the exponent in the Fresnel equations implies that  
        calculations based upon wave propagation remain accurate only for |z| � n. 
        Conversely, convolution  is accurate only for |z| � n. 



    Global and Local Minima 
 
Leone and co-authors [6, 7] have shown that some considerable insight may be 
gained into the occurrence and avoidance of local minima if the error is 
represented as the sum of squared intensity differences. A path in  f  is defined by  
f = f0 + ë n, where  f0 is the (unknown) global minimum for å,  n is another 
arbitrary  vector and ì  is a scalar variable. The path remains linear if transformed 
into the space of fz , but becomes quadratic in a space of  the squared amplitudes 
for any z. A line search direction in  f  is parabolic in | fz |

2. If the error function is 
defined as 

then å represents the squared distance between two points on a parabola. By 
substitution into eq. (7), an equation for å is derived that is quartic in ì, where 

å = ì 2 ( a ì 2 + b ì  + c).          (8) 
As shown opposite, the presence of a local minimum for å 
depends upon the curvature of the parabola. The condition 
for a single minimum at å = 0 is given by  

Knowledge of a, b and c implies that the global minimum 
along the search direction in a conjugate gradient routine is 
found by solution of a cubic in ì.  This produced a 
significant reduction in the processing time, but was not 
used in practice because the defocus and image offset 
parameters are non-linear in the space of  f.  

In eq. (9),  both a and c are sums over squared terms, and therefore always 
positive definite. However, b is a sum over cross-product terms that are likely to 
be positive and negative. It follows that the best way to reduce the incidence of 
local minima is to increase the number of terms that contribute to a and c. This can 
be achieved by adding more images to the data representation space. The 
introduction of a compact support increases the size of terms beyond the support 
that contribute to c, reducing the probability of convergence to local minima that 
do not satisfy the support conditions. Convergence is improved by maximising the 
ratio of known to unknown parameters, achieved by using several images 
combined with compact support of the object. An alternative procedure is to 
impose compact support on f in inverse space, equivalent to bandwidth limit-ation. 
In practice, it was found that using the phases ö as free parameters produced very 
similar behaviour to the arguments outlined above. In particular, the introduction 
of progressive bandwidth relaxation for both iterative and conjugate gradient 
routines was often an effective method for promoting convergence when neither 
routine would converge under standard conditions. 
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Fig. 2.    The phases cannot be retrieved from an array with completely random 
amplitudes (0 to 1)  and phases (0 to 2ð). However, reduction of the phase 
bandwidth by 50% along both axes (equivalent to a square aperture in Fourier space, 
or over-sampling of the image intensities) is sufficient to assure convergence from 
any random starting point. 
 

    Arrays (a) and (b) above show the object amplitudes and phases, respectively, 
where (c) is the Fresnel image at z = 60. The conjugate gradient routine converged 
exactly using only a single image and bandwidth relaxation. The equivalent iterative 
routine using a single image did not converge under any circumstances (see phase 
map (d) with 4% error). However, the use of two or more Fresnel images with the 
iterative routine was sufficient for rapid convergence if the starting phases were 
uniform. Convergence from a random array was very slow. 



 

         Retrieval of random phases within an aperture 

 

 
Fig.  3.     Although random phases for an entire  n2 array cannot be retrieved from the 
Fresnel intensities (cf. Fig. 2), the use of a finite support reduces the number of free 
parameters  and promotes convergence to the correct phase distribution.  An example 
is shown here for a circular aperture, radius n/4 (n =128), where phases and 
amplitudes within the aperture are completely random (0 to 2ð and 0 to 1). The 
amplitude distributions in the object plane (652) and in three image planes (1282) are 
shown in (a) to (d), where  z = 0, 60, -70 and 120, respectively. 
 
    The iterative routine did not converge even after 5000 iterations using 4 images, 
with or without bandwidth relaxation. Typical errors were ~20%. The conjugate 
gradient routine did converge but only by using a combination of bandwidth 
relaxation and a minimum of 3 Fresnel images (see error curves above). The 
parameter m represents the reduced bandwidth, where the associated phase arrays for 
m = 17, 33, 67 and 128 are shown in (e) to (h), respectively. The requirement for 
several images at different defoci is equivalent to over-sampling of a single image, or 
bandwidth reduction as used for the object phase array in Fig. 2. 
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Figs. 4 and 5.     For comparison with the random phase objects described in Figs. 
2 and 3,  the phase distribution in Fig. 4(a) was designed to resemble  the phase 
shifts induced in an electron beam by electric or magnetic fields. The amplitude 
is constant within a circular mask, radius n/4 (n = 128). The unwrapped phase 
surface is continuous and varies smoothly over several multiples of 2ð. The 
single Fresnel image at z = 60 shown in Fig. 4(b) is used for phase retrieval  
 
        In the absence of bandwidth relaxation, neither  algorithm converged to the 
correct phase distribution. The conjugate gradient routine was trapped in an 
apparent local minimum with an error of 8% (Fig. 4(d)). Likewise, the residual 
error for the iterative routine was 15% after 5000 iterations. The associated phase 
and amplitude maps are shown in Figs. 4(e) and (f). 
 
      However, both algorithms converged  rapidly when progressive relaxation of 
the phase bandwidth was used. The reduced bandwidths (m = 17, 33, 63 and 97) 
are marked in Fig. 3. Significantly, the phase map recovered by the conjugate 
gradient algorithm was the unwrapped version (Fig. 4(c)), produced by 
continuous deformation of the phase surface. 
 
Variation of the error along a line scan in phase space intersecting the global and 
local minima (Figs. 4(a) and (d), respectively) is shown in Fig. 5, together with 
equivalent scans for the phase maps with reduced bandwidths.  Significantly, a 
reduction in the number of phase parameters eventually removes the local 
minimum. The dashed lines indicate the path followed by a gradient descent 
algorithm confined to the line scan direction. 
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               Phase retrieval of text objects 
 

    
     Object intensity         Object phase        Image (z = 60)        Image (z = 120) 

 

    
      Start  (å = 46%)      m = 17 ( å = 27%)      m = 33  (å = 19%)     m = 63  (å = 12%) 

 

    
    m = 97  (å = 7%)           End   ( å = 0)     Single image (CG) Single image (Iterative) 

 

Fig.  6.  The text object used here to test convergence is both easily recognised and  
includes large changes of amplitude and phase at the Nyquist sampling limit. The 
object amplitude and phase is shown in (a) and (b), together with two defocused 
images in (c) and (d). The amplitude is reduced by 50% within letters and the phase is 
shifted by ð/2. It was essential to use two images for rapid convergence of both 
iterative and conjugate gradient routines, although bandwidth relaxation was 
unnecessary if the initial phases were uniform. The progressive increase of resolution 
using bandwidth relaxation is shown in (e) to (j).  If only a single image was used, 
convergence became extremely slow for both routines (see (k) and (l) after 500 and 
5000 iterations, respectively).  However, the residual errors for the phase maps shown 
in (k) and (l) were very small (typically 0.1%), demonstrating that a single parameter 
measure of the error is not always a reliable guide to image quality.
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    Phase shifts induced by a contaminated condenser aperture 
  

 
 
Fig. 6.   Example of  phase retrieval  using  defocused  images  of  a  contaminated 
10 ìm condenser aperture illuminated by a coherent electron beam.  Experimental 
under- and overfocused images of the aperture are shown in (a) and (d), 
respectively.  
 

The images were corrected for small shifts in magnification and rotation 
relative to the object plane, and then phases were retrieved with the conjugate 
gradient routine using bandwidth relaxation. The final error for the two images 
was about 5%. For comparison with  (a), the corresponding calculated image is 
shown in (b), together with the  modulus of the difference map in (c). Differences 
between (a) and (b) are attributed to partial coherence in the incident beam, and 
consequent overfitting of the higher intensity fringes. 

 
The phase map in the aperture plane is plotted  in an isometric view (e) and  

as stepped contours at intervals of 1 rad in (f). The total phase shift is about 10 rad, 
equivalent to 1.5 wavelengths. The phase surface is almost flat near the centre of 
the aperture. Around the perimeter the phase is both advanced and retarded, 
attributed to negatively charged patches of contaminants balanced by positive 
charge in the aperture strip. 
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Discussion 
 
Iterative algorithms are always considerably faster than any gradient descent 
algorithm that requires repeated calculations of the error function. As mentioned 
above, direct solution of a cubic equation for parabolic search directions in the 
data space did reduce the processing time by at least 50%. However, it was 
preferred to retain the flexibility of using the phases as free parameters together 
with the defoci and image offsets. It is worth noting that convergence is identical 
if the complete set of Fourier phase components are used as free parameters, 
being equivalent to a different set of orthonormal basis vectors for the same 
solution space.  The use of progressive bandwidth relaxation was based upon the 
idea that a severely reduced bandwidth eliminates most of the local minima, and 
increases the probability of convergence to the global minimum for a restricted  
model of the phase surface. Naturally, the error is not zero because the model is 
incorrect.  However, it is probable that the new starting point is within the 
catchment zone for the next global minimum when the bandwidth is increased.  
In this way, the search path is guided towards the correct minimum for an 
unrestricted bandwidth. The error curves in Fig. 5 illustrate this behaviour for a 
fixed line search direction. 
 
Factors that may affect convergence include: 
Ø Under-sampling of the image intensities. 
Ø Extent and shape of the support. 
Ø Number of images available (at suitable defocus intervals). 
Ø Natural bandwidth of the object amplitudes and phases. 
Ø Continuity of the unwrapped phase surface. 
Ø Relevance of bandwidth relaxation. 
Ø Starting point (random vs uniform phases). 
 
Considering the simulated examples, it was not unexpected that an object with 
completely random amplitudes and phases and no support failed to converge 
under any circumstances. It seems probable this behaviour must be attributed to 
under-sampling of the images, given that a phase modulation with wavelength 2ä 
in the object is expected to generate intensity modulations with wavelengths 
close to ä in a near-field image. If ä is the sampling interval, the images are 
under-sampled. This was confirmed  (Fig. 2) by halving the phase bandwidth. 
Both routines converged, although the iterative method required two images. The 
conjugate gradient routine required only a single image combined with 
bandwidth relaxation. Alternatively, the use of a circular support (radius n/4) 
with completely random phases and amplitudes was sufficient for the conjugate 
gradient routine to converge, although a minimum of 3 images and bandwidth 
relaxation were required (Fig. 6). The iterative routine did not converge. 
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Fig. 7.   (a) Object with annular support, constant amplitude and a helical phase 
surface increasing by 2ð for each revolution. As expected, all images show a dark 
spot at the centre (b). Both routines failed completely to converge under all 
circumstances. Examples  of local minima are shown in (c) and (d). 
____________________________________________________________________________________________ 
The continuous unwrapped phase surface used in Fig. 4 was retrieved only when 
bandwidth relaxation was used. Otherwise, both algorithms became trapped in local 
minima. The text object (Fig. 6) contained short wavelengths, implying partial under-
sampling of the image intensities, combined with large areas of constant phase and 
amplitude. For both routines, bandwidth relaxation was not strictly necessary, but it 
was essential to use two images to compensate for under-sampling. Convergence was 
very slow if a single image was used. It seems that the bandwidth relaxation 
procedure encourages convergence if an object contains a balanced mixture of 
wavelengths and is not under-sampled. It is especially useful if the phase surface is 
continuous and extends over several multiples of 2ð. Generally, there were no phase 
distributions that could be recovered only by the iterative routine, although there were 
several converse examples. The process of bandwidth relaxation encourages 
continuous deformation of an initially smooth phase surface. The example shown in 
Fig. 7 was designed as a severe test because the phase surface is both continuous and 
multiply valued. Neither routine converged. 
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